A point charge is at rest at the origin of frame \mathcal{F}', which moves with velocity $v = v \hat{i}$ relative to frame \mathcal{F}. In frame \mathcal{F}', the point charge generates the electrostatic field,

$$E'(x') = \frac{q}{4\pi\epsilon_0|x'|^3},$$

and no magnetic field: $B'(x') \equiv 0$.

(a) Use the Lorentz transformation for the position and field vectors to determine the electric field $E(x, t)$ and magnetic field $B(x, t)$ observed in frame \mathcal{F}.

(b) Describe in words the direction, orientation, and shape of the electric and magnetic field lines in frame \mathcal{F}. Show graphical evidence for your description.

(c) Describe in words the shape of contour lines of electric and magnetic field strengths (i) in the yz-plane and (ii) in the xz-plane. Show graphical evidence for your description.

Solution: